History




Before digital imaging, the first photograph ever produced, View from the Window at Le Gras, was in 1826 by Frenchman Joseph Nicéphore Niépce. When Joseph was 28, he was discussing with his brother Claude about the possibility of reproducing images with light. His focus on his new innovations began in 1816. He was in fact more interested in creating an engine for a boat. Joseph and his brother focused on that for quite some time and Claude successfully promoted his innovation moving and advancing him to England. Joseph was able to focus on the photograph and finally in 1826, he was able to produce his first photograph of a view through his window. This took 8 hours or more of exposure to light.

The first digital image was produced in 1920, by the Bartlane cable picture transmission system. British inventors, Harry G. Bartholomew and Maynard D. McFarlane, developed this method. The process consisted of “a series of negatives on zinc plates that were exposed for varying lengths of time, thus producing varying densities,”. The Bartlane cable picture transmission system generated at both its transmitter and its receiver end a punched data card or tape that was recreated as an image.

In 1957, Russell A. Kirsch produced a device that generated digital data that could be stored in a computer; this used a drum scanner and photomultiplier tube.

Digital imaging was developed in the 1960s and 1970s, largely to avoid the operational weaknesses of film cameras, for scientific and military missions including the KH-11 program. As digital technology became cheaper in later decades, it replaced the old film methods for many purposes.

In the early 1960s, while developing compact, lightweight, portable equipment for the onboard nondestructive testing of naval aircraft, Frederick G. Weighart and James F. McNulty (U.S. radio engineer) at Automation Industries, Inc., then, in El Segundo, California co-invented the first apparatus to generate a digital image in real-time, which image was a fluoroscopic digital radiograph. Square wave signals were detected on the fluorescent screen of a fluoroscope to create the image.

Digital image sensorsedit

The basis for digital image sensors is metal–oxide–semiconductor (MOS) technology, which originates from the invention of the MOSFET (MOS field-effect transistor) by Mohamed M. Atalla and Dawon Kahng at Bell Labs in 1959. This led to the development of digital semiconductor image sensors, including the charge-coupled device (CCD) and later the CMOS sensor.

The charge-coupled device was invented by Willard S. Boyle and George E. Smith at Bell Labs in 1969. While researching MOS technology, they realized that an electric charge was the analogy of the magnetic bubble and that it could be stored on a tiny MOS capacitor. As it was fairly straightforward to fabricate a series of MOS capacitors in a row, they connected a suitable voltage to them so that the charge could be stepped along from one to the next. The CCD is a semiconductor circuit that was later used in the first digital video cameras for television broadcasting.

Early CCD sensors suffered from shutter lag. This was largely resolved with the invention of the pinned photodiode (PPD). It was invented by Nobukazu Teranishi, Hiromitsu Shiraki and Yasuo Ishihara at NEC in 1980. It was a photodetector structure with low lag, low noise, high quantum efficiency and low dark current. In 1987, the PPD began to be incorporated into most CCD devices, becoming a fixture in consumer electronic video cameras and then digital still cameras. Since then, the PPD has been used in nearly all CCD sensors and then CMOS sensors.

The NMOS active-pixel sensor (APS) was invented by Olympus in Japan during the mid-1980s. This was enabled by advances in MOS semiconductor device fabrication, with MOSFET scaling reaching smaller micron and then sub-micron levels. The NMOS APS was fabricated by Tsutomu Nakamura's team at Olympus in 1985. The CMOS active-pixel sensor (CMOS sensor) was later developed by Eric Fossum's team at the NASA Jet Propulsion Laboratory in 1993. By 2007, sales of CMOS sensors had surpassed CCD sensors.

Digital image compressionedit

An important development in digital image compression technology was the discrete cosine transform (DCT), a lossy compression technique first proposed by Nasir Ahmed in 1972. DCT compression became the basis for JPEG, which was introduced by the Joint Photographic Experts Group in 1992. JPEG compresses images down to much smaller file sizes, and has become the most widely used image file format on the Internet. Its highly efficient DCT compression algorithm was largely responsible for the wide proliferation of digital images and digital photos, with several billion JPEG images produced every day as of 2015.

Digital camerasedit

These different scanning ideas were the basis of the first designs of digital camera. Early cameras took a long time to capture an image and were poorly suited for consumer purposes. It wasn't until the adoption of the CCD (charge-coupled device) that the digital camera really took off. The CCD became part of the imaging systems used in telescopes, the first black-and-white digital cameras in the 1980s. Color was eventually added to the CCD and is a usual feature of cameras today.

Comments

Popular posts from this blog

33)Sheikh Hasina the right choice as key guest to the Republic Moment but trust the PMO to miss the obvious

What Makes a Good Linear Logo Design?

Field advancements